
Science Standards 101: Preparing for New Arkansas K12 Science Standards

Lesley Merritt, CMASE Science Specialist Virginia Rhame, NWAESC Science Specialist

*<u>https://plickers.com/liveview</u>

*How well do you know your standards?

Next Steps in Arkansas

Endorsed by SBE. AR K-12 Science Standards will be Written

NGSS

Continue to teach the Arkansas Science Curriculum Framework

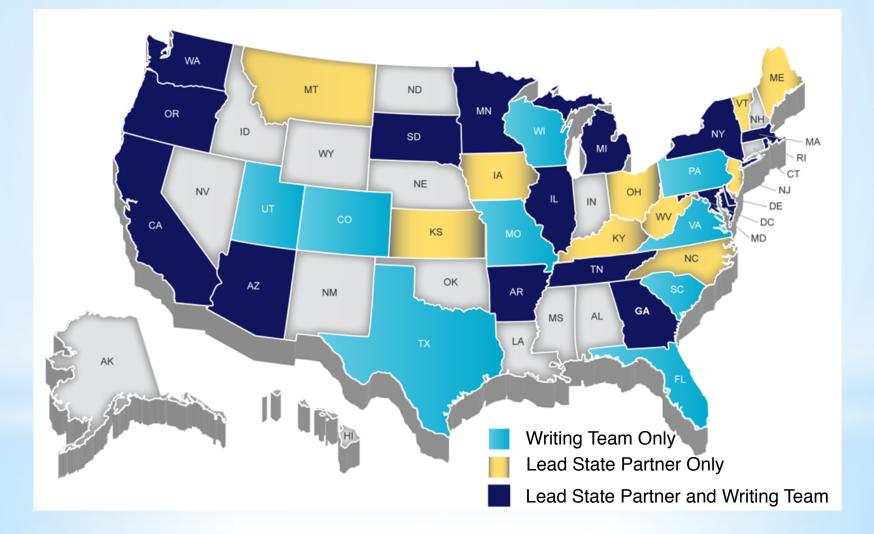
EPARTMEN

EADERSHIP

SUPPORT SERVICE

NSAS

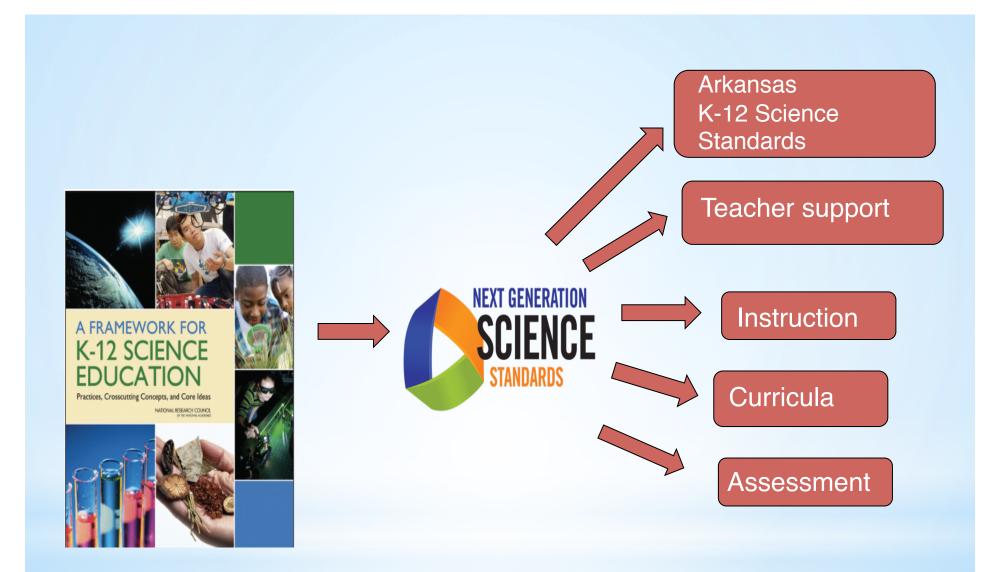
Become familiar with the Practices and Crosscutting Concepts -NGSS@NSTA and PD


K-12 SCIENCE

EDUCATION

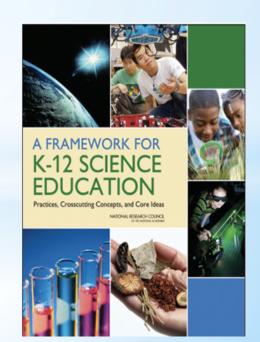
Begin to incorporate the Practices and Crosscutting Concepts into your curriculum

How was Arkansas Involved in the development of the NGSS?


5

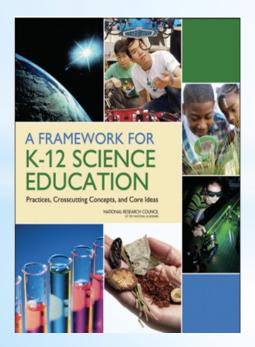
- Introduce yourselves to each other. Read through the shifts in the envelope in your group.
- As you read, discuss. . .
- What are some big ideas you find especially important or pertinent? What implications are there for you in your classroom?

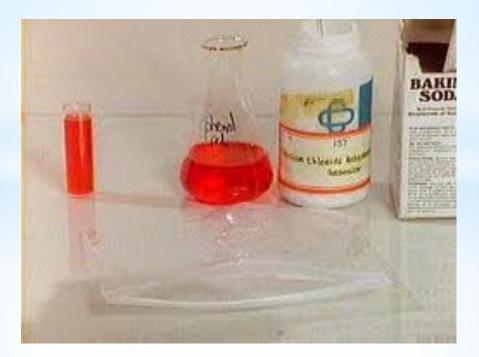
- *Better understand the NRC *Framework* and the three dimensions of Disciplinary Core Ideas, Science and Engineering Practices, and Crosscutting Concepts.
- *Be able to better support students participation in Science and Engineering Practices
- *Be able to identify and better integrate Crosscutting Concepts into current curriculum
- *Be able to successfully navigate and read new standards and supporting documents



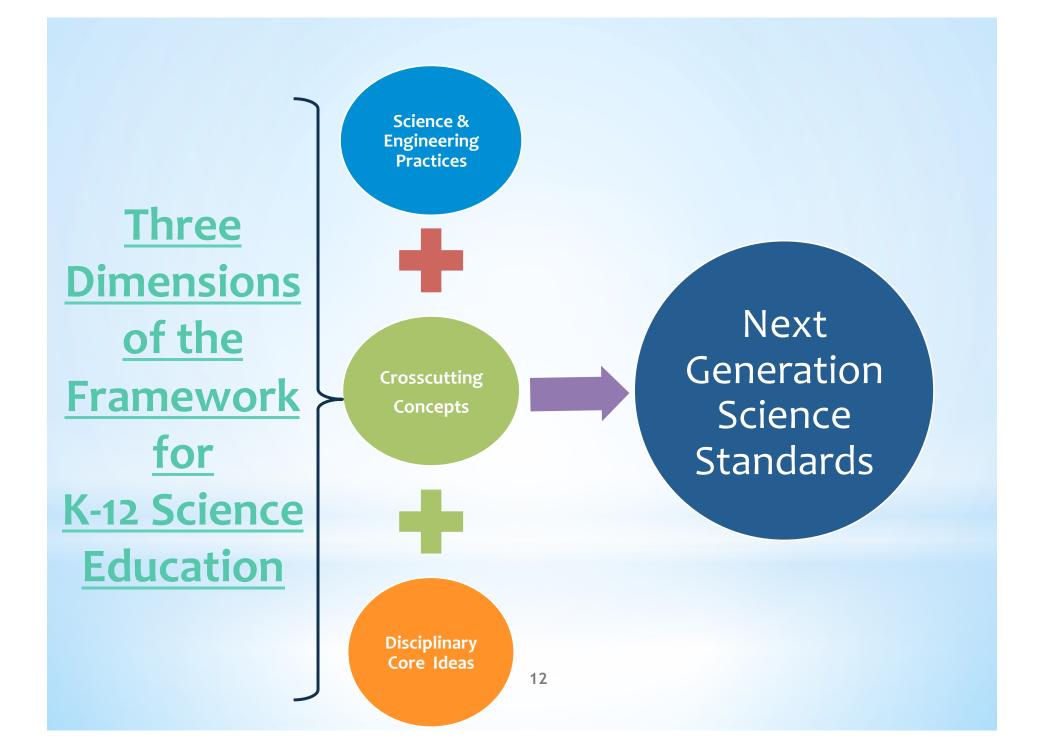
Transitions in Science Education

Students, over multiple years of school, actively engage in scientific and engineering practices and apply crosscutting concepts to deepen their understanding of the core ideas in these fields.


A Vision for K-12 Science Education

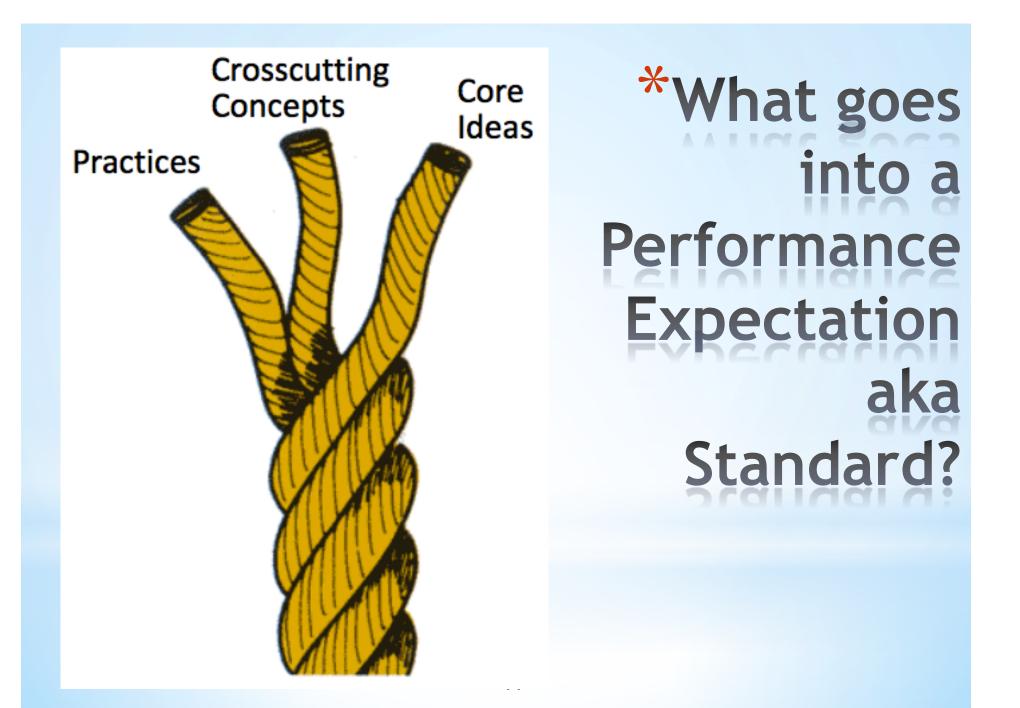

The main goal of the Framework is to ensure that by the end of high school all students have some appreciation of science, the ability to discuss and think critically about science-related issues, and the skills to pursue careers in science or engineering.

~Brian Reiser (2011)


Goals for K-12 Science Education

What indicates a Chemical Change?

Borrowed from Institute for Inquiry - Exploratorium



NGSS is Different

- Standards expressed as Performance Expectations.
- Combine core ideas, practices, and crosscutting concepts into a single statement of *what is to be assessed*.

 Performance Expectations are not instructional strategies or objectives for a lesson.

Physical Sciences

Life Sciences

Earth and Space Sciences

Engineering, Technology, and Applications of Science

Arkansas K-12 Science Standards Matrix Organized by Disciplinary Core Ideas

		Life Science	Earth & Space Science	Physical Science	Engineering	
	К	K-LS1 From Molecules to Organisms: Structures and Processes	K-ESS2 Earth's Systems K-ESS3 Earth and Human Activity	K-PS2 Motion and Stability: Forces and Interactions K-PS3 Energy		
lool	1	1-LS1 From Molecules to Organisms: Structures and Processes 1-LS3 Heredity: Inheritance and Variation of Traits	1-ESS1 Earth's Place in the Universe	1-PS4 Waves and Their Applications in Technologies for Information Transfer	K-2-ETS1 Engineering Design	
	2	2-LS2 Ecosystems: Interactions, Energy, and Dynamics 2-LS4 Biological Evolution: Unity and Diversity	2-ESS1 Earth's Place in the Universe 2-ESS2 Earth's Systems	2-PS1 Matter and Its Interactions		
Elementary School	3	3-LS1 From Molecules to Organisms: Structures and Processes 3-LS2 Ecosystems: Interactions, Energy, and Dynamics 3-LS3 Heredity: Inheritance and Variation of Traits 3-LS4 Biological Evolution: Unity and Diversity	3-ESS2 Earth's Systems 3-ESS3 Earth and Human Activity	3-PS2 Motion and Stability: Forces and Interactions		
E	4	4-LS1 From Molecules to Organisms: Structures and Processes	4-ESS1 Earth's Place in the Universe 4-ESS2 Earth's Systems 4-ESS3 Earth and Human Activity	4-PS3 Energy 4-PS4 Waves and Their Applications in Technologies for Information Transfer	3-5-ETS1 Engineering Design	
	5	5-LS1 From Molecules to Organisms: Structures and Processes 5-LS2 Ecosystems: Interactions, Energy, and Dynamics	5-ESS1 Earth's Place in the Universe 5-ESS2 Earth's Systems 5-ESS3 Earth and Human Activity	5-PS1 Matter and Its Interactions 5-PS2 Motion and Stability: Forces and Interactions 5-PS3 Energy		
	6	6-LS1 From Molecules to Organisms: Structures and Processes 6-LS3 Heredity: Inheritance and Variation of Traits	6-ESS2 Earth's Systems 6-ESS3 Earth and Human Activity	6-PS3 Energy		
Middle School	7	7-LS1 From Molecules to Organisms: Structures and Processes 7-LS2 Ecosystems: Interactions, Energy, and Dynamics	7-ESS2 Earth's Systems 7-ESS3 Earth and Human Activity	7-PS1 Matter and Its Interactions	MS-ETS1 Engineering	
Middl	8	8-LS3 Heredity: Inheritance and Variation of Traits 8-LS4 Biological Evolution: Unity and Diversity	8-ESS1 Earth's Place in the Universe	8-PS2 Motion and Stability: Forces and Interactions 8-PS3 Energy 8-PS4 Waves and Their Applications in Technologies for Information Transfer	- Design	
High		HS-LS1 From Molecules to Organisms: Structures and Processes HS-LS2 Ecosystems: Interactions, Energy, and Dynamics HS-LS3 Heredity: Inheritance and Variation of Traits HS-LS4 Biological Evolution: Unity and Diversity	HS-ESS1 Earth's Place in the Universe HS-ESS2 Earth's Systems HS-ESS3 Earth and Human Activity	HS-PS1 Matter and Its Interactions HS-PS2 Motion and Stability: Forces and Interactions HS-PS3 Energy HS-PS4 Waves and Their Applications in Technologies for Information Transfer	HS-ETS1 Engineering Design	

This matrix from NSTA was modifed for Arkansas grade level standards May 2015

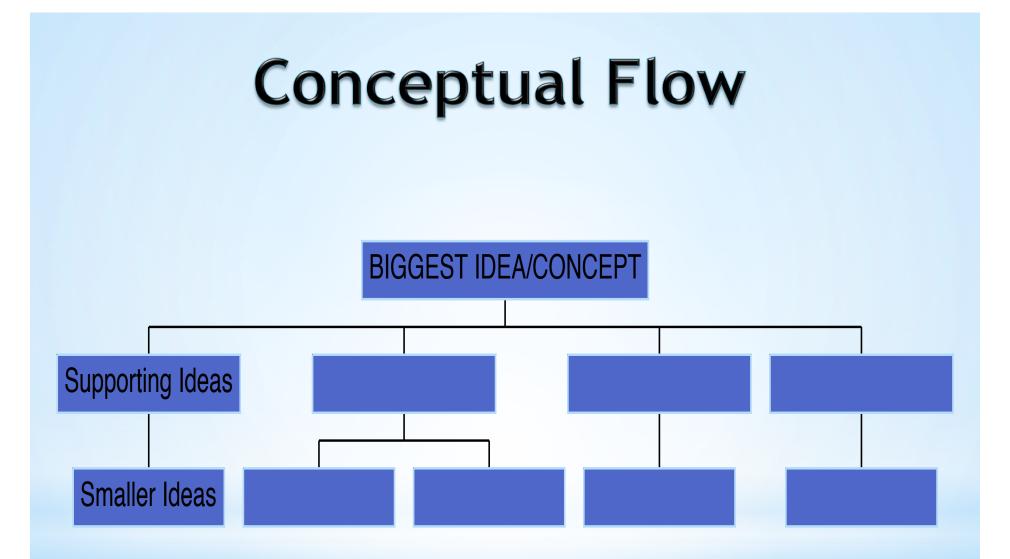
Learning Progression of Ideas Across Time

ESS1.C The history of planet Earth

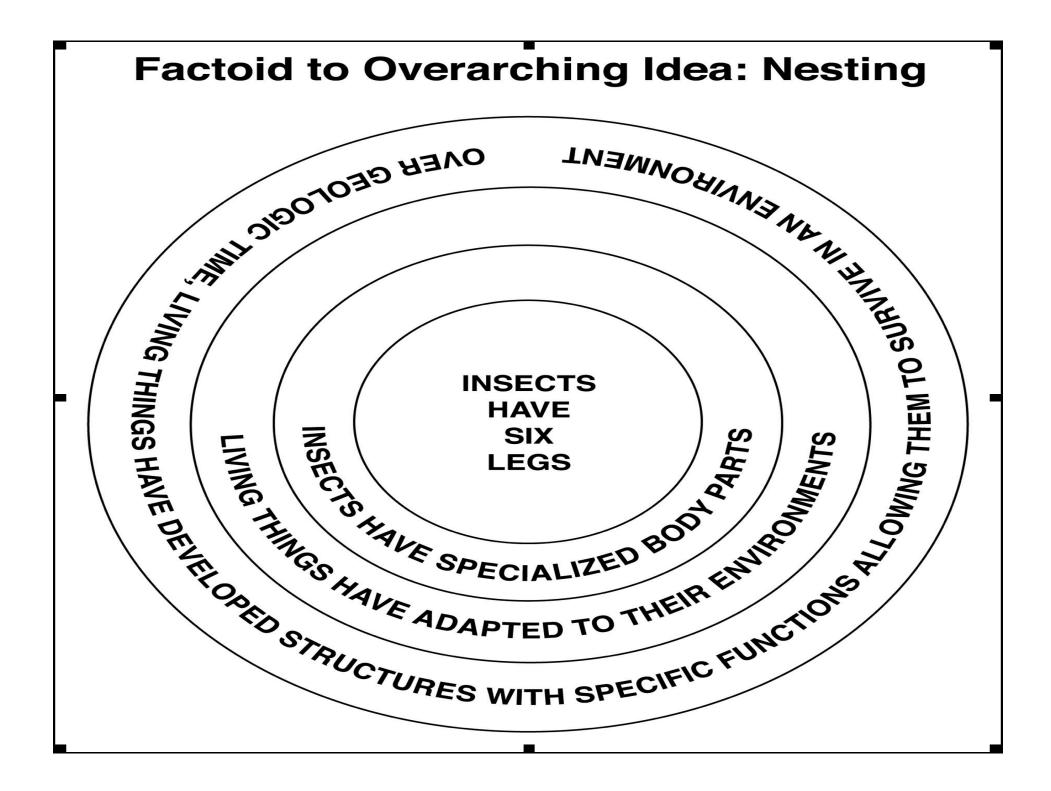
K-2

Some events on Earth occur very quickly; others can occur very slowly

Grade 3-5


Certain features on Earth can be used to order events that have occurred in a landscape

Grade 6-8


Rock strata and the fossil record can be used as evidence to organize the relative occurrence of major historical events in Earth's history

Grade 9-12

The rock record resulting from tectonic and other geoscience processes as well as objects from the solar system can provide evidence of Earth's early history and the relative ages of major geologic formations

Conceptual Flow Developed by the K-12 Alliance/WestEd

How well do you know your practices?

Analysis of ELA/Math/Science Practices

ELA Capacities	Mathematical Practices	Scientific and Engineering Practices
Demonstrate independence	Make sense of problems and persevere in solving them	Asking questions (for science) and defining problems (for engineering)
Build strong content knowledge	Reason abstractly and quantitatively	Developing and using models
Respond to the varying demands of audience, task, purpose, and discipline	Construct viable arguments and critique the reasoning of others	Planning and carrying out investigations
Comprehend as well as critique	Model with mathematics	Analyzing and interpreting data
Value evidence	Use appropriate tools strategically	Using mathematics, information and computer technology, and computational thinking
Use technology and digital media strategically and capably	Attend to precision	Constructing explanations (for science) and designing solutions (for engineering)
Come to understand other perspectives and cultures	Look for and make use of structure	Engaging in argument from evidence
	Look for and express regularity in repeated reasoning	Obtaining, evaluating, and communicating information

Science & Engineering Practices

Eight Practices

"Note that in doing science or engineering, the practices are used iteratively and in combination; they are not linear steps to be taught in order"

*Read Article, Discuss, Post to Padlet

http://padlet.com/vrhame/SciEng

Science & Engineering Practices

Eight Practices - Appendix F

- 1.Asking questions (science) and defining problems (engineering)
- **2.** Design and using models
- **3.**Planning and carrying out investigations
- **4.**Analyzing and interpreting data
- 5. Using mathematics and computational thinking
- 6. Developing explanations (science) and designing solutions (engineering)
- 7. Engaging in argument
- 8.Obtaining, evaluating, and communicating information

Science & Engineering Practices Asking Questions and Defining Problems

A practice of science is to ask and refine questions that lead to descriptions and explanations of how the natural and designed world(s) works and which can be empirically tested. Engineering questions clarify problems to determine criteria for successful solutions and identify constraints to solve problems about the designed world. Both scientists and engineers also ask questions to clarify ideas.

K–2 Condensed Practices	3–5 Condensed Practices	6–8 Condensed Practices	9–12 Condensed Practices
Asking questions and defining problems in K–2 builds on prior experiences and progresses to simple descriptive questions that can be tested.	Asking questions and defining problems in 3–5 builds on K–2 experiences and progresses to specifying qualitative relationships.	Asking questions and defining problems in 6–8 builds on K–5 experiences and progresses to specifying relationships between variables, clarify arguments and models.	Asking questions and defining problems in 9–12 builds on K–8 experiences and progresses to formulating, refining, and evaluating empirically testable questions and design problems using models and simulations.
 Ask questions based on observations to find more information about the natural and/or designed world(s). 	 Ask questions about what would happen if a variable is changed. 	 Ask questions that arise from careful observation of phenomena, models, or unexpected results, to clarify and/or seek additional information. Ask questions to identify and/or clarify evidence and/or the premise(s) of an argument. Ask questions to determine relationships between independent and dependent variables and relationships in models Ask questions to clarify and/or refine a model, an explanation, or an engineering problem. 	 Ask questions that arise from careful observation of phenomena, or unexpected results, to clarify and/or seek additional information. Ask questions that arise from examining models or a theory, to clarify and/or seek additional information and relationships. Ask questions to determine relationships, including quantitative relationships, between independent and dependent variables. Ask questions to clarify and refine a model, an explanation, or an engineering problem.
 Ask and/or identify questions that can be answered by an investigation. 	 Identify scientific (testable) and non-scientific (non-testable) questions. Ask questions that can be investigated and predict reasonable outcomes based on patterns such as cause and effect relationships. 	 Ask questions that require sufficient and appropriate empirical evidence to answer. Ask questions that can be investigated within the scope of the classroom, outdoor environment, and museums and other public facilities with available resources and, when appropriate, frame a hypothesis based on observations and scientific principles. 	 Evaluate a question to determine if it is testable and relevant. Ask questions that can be investigated within the scope of the school laboratory, research facilities, or field (e.g., outdoor environment) with available resources and, when appropriate, frame a hypothesis based on a model or theory.
		 Ask questions that challenge the premise(s) of an argument or the interpretation of a data set. 	 Ask and/or evaluate questions that challenge the premise(s) of an argument, the interpretation of a data set, or the suitability of the design.
 Define a simple problem that can be solved through the development of a new or improved object or tool. 	 Use prior knowledge to describe problems that can be solved. Define a simple design problem that can be solved through the development of an object, tool, process, or system and includes several criteria for success and constraints on materials, time, or cost. 	 Define a design problem that can be solved through the development of an object, tool, process or system and includes multiple criteria and constraints, including scientific knowledge that may limit possible solutions. 	 Define a design problem that involves the development of a process or system with interacting components and criteria and constraints that may include social, technical and/or environmental considerations.

Developed by NSTA using information from Appendix F of the Next Generation Science Standards @ 2011, 2012, 2013 Achieve, Inc.

Crosscutting Concepts

Seven Crosscutting Concepts - Appendix G

1. Patterns

- 2. Cause and effect: Mechanism and explanation
- **3.** Scale, proportion, and quantity
- 4. Systems and system models
- 5. Energy and matter: Flows, cycles, and conservation
- 6. Structure and function
- 7. Stability and change

"Crosscutting Concepts help students organize and make sense of science."

Brett Moulding

*Using Crosscutting Concepts

Across Disciplines

Life	Earth	Physical
Photosynthesis	Earthquakes	Electricity
<	– ENERGY –	>

Within a Discipline

	Life Science	
Cells	Organ Systems	Ecosystems
	SCALE	
<		

Three-Dimensional Learning

*7-LS2-1 Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem

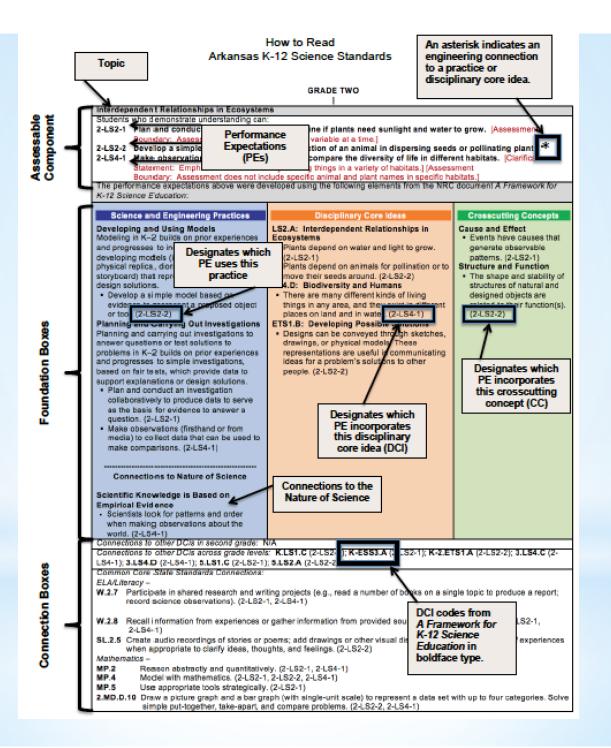
Three-Dimensional Learning Dissected

7-LS2-1 Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.

Performance Expectation

2.Structure and Properties of Matter

Students who demonstrate understanding can:

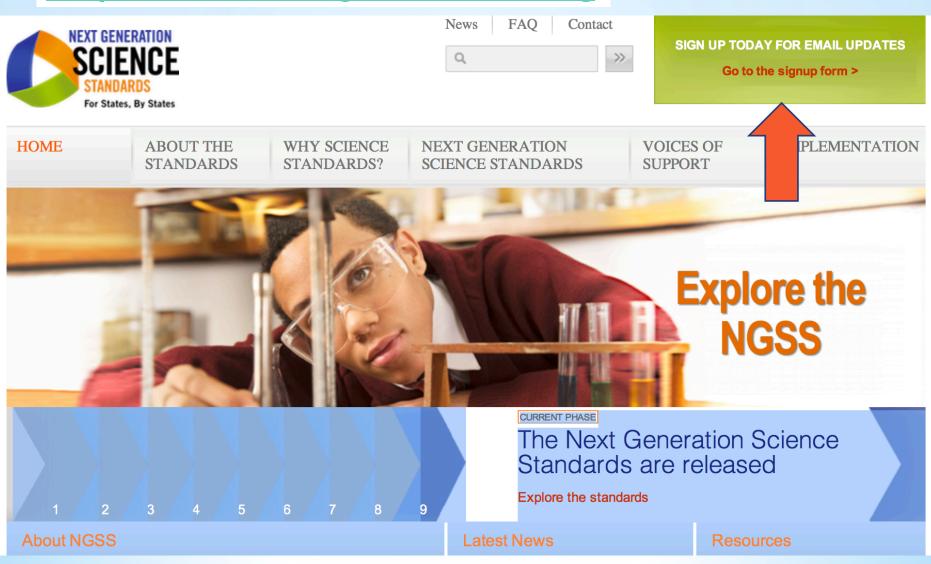

2-PS1-2. Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.* [Clarification Statement: Examples of properties could include, strength, flexibility, hardness, texture, and absorbency.] [Assessment Boundary: Assessment of quantitative properties is limited to number or length.]

Foundation Boxes

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
 Analyzing and Interpreting Data Analyzing data in K-2 builds on prior experiences and progresses to collecting, recording, and sharing observations. Analyze data from tests of an object or tool to determine if it works as intended. (2-PS1-2) 	PS1.A: Structure and Properties of Matter Different properties are suited to different purposes. (2-PS1-2) 	Cause and Effect Simple tests can be designed to gather evidence to support or refute student idea about causes. (2-PS1-2) Connections to Engineering, Technolog and Applications of Science Influence of Engineering, Technology, and Science, on Society and the Natural World Every human-made product is designed by applying some knowledge of the natural world and is built by using natural materials. (2-PS1-2)

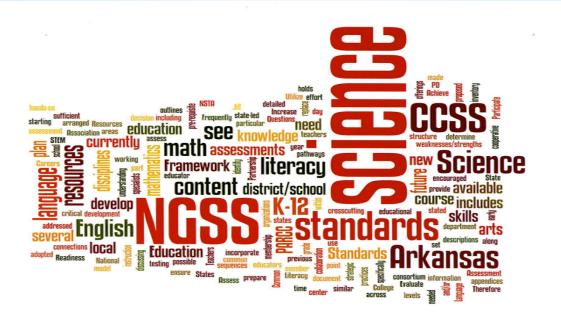
Connection Boxes

Connections to other DCIs in this grade-level: will be available on or before April 26, 2013.	
Articulation of DCIs across grade-levels: will be available on or before April 26, 2013.	
Common Core State Standards Connections: will be available on or before April 26, 2013.	
ELA/Literacy -	
Mathematics -	



*NGSS Dissection Task

Identify and Highlight the Practice in the PE in blue DCI in the PE in orange CCC in the PE in green Identify and Underline the Clarification statement Identify and Circle


Assessment Boundary

http://www.nextgenscience.org

Transitioning Activity Examine your grade/grade band standards. Complete the Transition Handout in your packet.

Share your plan with your group.

Find a partner Stand face-to-face

The intent of the Framework is to change how we teach science so that it is more like how scientists work.

- •What shifts will be necessary in your instruction or curriculum?
- •What questions do you have?

Final Thoughts